CHIRALITY CHANGES IN REACTIONS OF ASYMMETRIC MOLYBDENUM COMPLEXES

J W FALLER *, Y SHVO **, K CHAO, and H H MURRAY
Department of Chemistry, Yale University, New Haven, Connecticut 06520 (US A)

(Received January 19th, 1981, in revised form September 18th, 1981)

Summary

Optical rotatory dispersion and circular dichroism studies have allowed the determination of the changes in configuration at the molybdenum center upon displacement of carbonyl and iodide in neomenthylcyclopentadienyl-Mo(allyl)(NO)X systems Displacement of carbonyl by iodide occurs with retention of configuration Replacement of iodide with benzenesulfonate followed by replacement of the sulfonate with iodide occurs stereospecifically with net retention of configuration. In the case of cyclopentadienylMo(cyclooctenyl)(NO)I, the enantiomers were separated via a spontaneous resolution through crystallization of the complex in the space group $P 2_{1} 2_{1} 2_{1}$ These studies have allowed the correlation not only of the absolute configuration at the metal center with CD studies, but also have estabhished that a long wavelength optically active transition at approximately 400 nm can be correlated with endo-exo isomensm. Comparison of the rates of interconversion suggest that endo to exo isomerization occurs via a clockwise rotation of the allyl in the (R)-isomer. Crystallographic details- (-)-(S)-(NMCp)Mo(allyl)(NO)I crystalizes in the space group $P 2_{1} 2_{1} 2_{1}$ with $a 7$ 221(1), $b 12.686(7), c 21.603(7) \AA, Z=$ $4, V=1979(2) \AA^{3} ; R_{1}=0.039, R_{2}=0.046,(-)-(S)-(C p) M o(c y c l o o c t e n y l)(N O) I$ crystallizes in the space group $P 2_{1} 2_{1} 2_{1}$ with $a 8.466(1), b 10.449(2), c$ $16.372(2) \AA, Z=4, V=14483(6), R_{1}=0038$. and $R_{2}=0046$

We have established that iodide displacement of carbonyl in [η^{5}-neomenthylcyclopentadienyl) $\mathrm{Mo}\left(\eta^{3}\right.$-allyl $\left.)(\mathrm{NO})(\mathrm{CO})\right]$ cation occurs with retention of configuration at the metal center [1] (Fig 1). Within the currently accepted nomenclature rules [2] this conversion of (+) $\mathbf{D}_{\mathbf{D}}[(\mathrm{NMCp}) \mathrm{Mo}(\mathrm{allyl})(\mathrm{NO})(\mathrm{CO})]^{* * *}$

[^0]

 (allyl)(NO)(I)]
ion to ($)_{\mathrm{D}}-[(\mathrm{NMCp}) \mathrm{Mo}($ allyl $)(\mathrm{NO})(\mathrm{I})]$ occurs with conversion of the (R) isomer to the (S) isomer ${ }^{*}$, as well as rotational sign reversal. Nevertheless, the sense of the chiraltty ** at CpMo (allyl)(NO)X monety is retaned.

The chiroptical properties (see Figs. 2-7) of these complexes are complıcated owing to conformational equilibria. Examination of the optical rotatory dispersion (ORD) spectrum of the (+)-cation shows a positive rotation throughout the visible spectrum and up to 300 nm in the UV (Fig. 2). This is partially the result of several overlapping, strongly optically actuve transitions having positive Cotton effects in the UV (290 and 320 nm). The (-)-iodide shows a negative rotation throughout most of the visible and near UV (Fig. 6) The iodide rapidly = equilibrates ($t_{1 / 2} \sim 10 \mathrm{~s}$) to a mixture of endo and exo isomers: whereas, the cation only equilibrates slowly ($t_{1 / 2}=0.5 \mathrm{~h}$). In the preparation of the cation,

one obtains a kinetically-controlled non-equilibrium mixture of endo-exo isomers which is effectively pure endo The resolution of enantiomers is grcomplished rapidly enough to prevent isomerization Thus, when the ORD or circular dichroism (CD) spectra are obtamed shortly after dissolving the crystalline cation, one observes changmg values untal equilibrium is established.

[^1]

Fig 2 The ORD of (+)- and (-)-[(NMCp)Mo(allyl)(NO)(CO)]PF ${ }_{6}$ (equilibnum mixture of conformers in acetone)

Fig 3 The CD of (+)- and (-)-[(NMCp)Mo(allyl)(NO)(CO)]PF ${ }_{6}$ (equilibnum minture of conformers in acetone)

The rapid equilibration of the iodide, however, allows an equilibrium ratio of endo-exo isomers to be established before the spectrum can be recorded Thus, one usually observes that the ORD and CD spectra of the cation initially vary with time, whereas, those of the iodide are constant *.

Examination of the CD spectrum of the allyl cation as a function of time clearly indicates that endo-exo isomerization reverses the sign of a band in the visible at $\sim 410 \mathrm{~nm}$ (see Fig. 4). The sign of the rotation in the visible spectrum remains positive throughout the observed endo-exo interconversions. Hence,

[^2]

Fig 4 The CD of ($\left.{ }^{+}\right)_{D}-[(N M C D) M o(a l l y I)(N O)(C O)] P F_{6}$ as a function of time (min) after dissolung the endo somer in acetone a 9. b 20 c 29 d 36 e 45 Ambient spectrometer temperature $\sim 20^{\circ} \mathrm{C}$

Fig 5. CD of ($\left.{ }^{+}\right)_{D}-[(N M C P) M o(m e t h a l l y l)(N O)(C O)] P F_{6}$ as a function of time (min) after dissolinng a muxture rich in the exo isomer (exo/endo ~2) in acetone $a, 10 \mathrm{~b}, 20, c, 610, d, 1420 ; e, 1850 ; f \infty$ Ambient spectrometer temperature $30^{\circ} \mathrm{C}$
it is convenient to empirically characterize configurations at the metal by the sign of the rotation at the sodium D line. Nevertheless, one must recognize that significant changes in the rotational strength at $\sim 400 \mathrm{~nm}$ may be masked be other features

As indicated by a crystal structure determination [1], the cation can be crystallized as the endo isomer. This complex slowly isomerizes to an equil-

TABLEE 1
SOLVENT EFFEGTS ON THE CD SPECTRUM OF (\rightarrow D-NMCpMo(allyl)(NO)I

Solvent	K_{eq}	$\Delta \in(420)$	$\Delta \in\left(\lambda_{\text {max }}\right)$
Chloroform	011	-0682	$-0.682(420)$
Cyclohexane	0.16	-0537	$-0580(430)$

Fig 6 ORD of $(+)_{D}$ - and $(-)_{D}[(N M C p) M O(a l l y l)(N O) I]$ in chloroform endo predominates (90%)

brium mixture which predominates in the exo isomer ($K_{\mathrm{eq}}=3.8 \mathrm{in}$ acetone by NMR). Furthermore, the NMR spectrum indicates that no racemization of either isomer occurs in this process *.

The (-)-iodide shows two negative CD bands (Fig 7) in the visible and near UV at 421 and 351 nm in chloroform for which the endo isomer predominates. ($K_{\mathrm{eq}}=011$ by NMR) Since the endo-exo equilibrium is readily perturbed by the polarity of the solvent, significant variations in the CD spectrum can be observed upon changes in solvent. (See Table 1) These changes are consistent with a sımılar reversal in sign in the long wavelength region.

[^3]The oligin of the CD and ORD changes in the cations
X-ıay structures [1] of the two key complexes, (+) ${ }_{\text {D }}$-endo-[(NMCp)Mo(allyl)$(\mathrm{NO})(\mathrm{CO})] \mathrm{PF}_{6}$ and $(-)_{\mathrm{D}}-$ endo-[(NMCp)Mo(allyl)(NO)I] provide the basis for establishing the relationship of the CD spectra to the absolute configuration at the metal center. The absolute configuration at the metal center was determined by reference to the chiral centers in the neomenthyl group, which are known with virtual certainty through chemical methods [3,4]. In order to demonstrate unequivocally the absolute configuration of the neomenthyl moiety, Friedl pars were recollected for the odide and the structure refined using both $F(h k l)$ and $F(\bar{h} \overline{k l})$ The presence of both rodide and molybdenum produce large anomalous dispersion effects and both R-factor tests and comparisons of reflections with large anomalous dispersion effects confirmed the absolute configurations of the neomenthyl centers and the metal center [5,6,7]. This confirms the absolute configurations of the centers in the neomenthyl group, and thus secures the absolute configuration at the metal center in the ${ }^{(+)_{\mathrm{D}}-\text { endo- }[(\mathrm{NMCp}) \mathrm{Mo}(\text { allyl })(\mathrm{NO})(\mathrm{CO})] \text { cation. }}$

With the absolute configurations of the metal centers in hand, the correlations with CD spectra would be straightforward, if it were not for the facility of endo-exo isomerism. Thus, spectra are usually observed on equilibrium populations of endo and exo isomers, rather than the pure isomer found in the crystal. Although the configuration at the metal center might be expected to dominate the CD transitions, at least in the visible and near UV $[8,9]$, the endo-exo conformational isomerism apparently gives nse to large effects.

In order to demonstrate that the changes in CD arising from variations in solvent in the rodide, or the changes occurring with time upon dissolving the cation, were associated with endo-exo isomerism, we investigated the effects of substituents on the allyl group. We had shown previously that the free energy associated with the endo-exo equilibrium can be varied as much as 5 $\mathrm{kcal} / \mathrm{mole}$ by steric interaction of the central allyl substituent with the cyclopentadienyl ring in the $\mathrm{CpMo}($ allyl $)(\mathrm{CO})_{2}$ analogs [10] \times. Thus, substitution at the central position greatly enhances the stablity of the endo isomer, whereas, ant t-substitution favors the exo isomer.

In order to explore these variations we examined the effect of a 2-methyl substituent in the $\left.{ }^{+}\right)_{D}-[(\mathrm{NMCp}) \mathrm{Mo}($ methallyl $)(\mathrm{NO})(\mathrm{CO})]$ cation. We have generally found that the kinetic cationic product has the opposite stability to the thermodynamically preferred product. Thus, the endo- CpMo (allyl)(NO)(CO) cation is isolated from the reaction mixture upon treatment of CpMo (allyl)(CO) ${ }_{2}$ with NOPF_{6}, even though the exo isomer is more stable thermodynamically [12] In contrast, the exo-CpMo(methallyl)(NO)(CO) cation is solated initially and converts to an isomeric mixture nch in the endo isomer Thus, we anticipated that the (+$)_{\mathrm{D}}-[(\mathrm{NMCp}) \mathrm{Mo}($ methallyl $)(\mathrm{NO})(\mathrm{CO})]$ cation would initially be isolated as the exo isomer and convert in solution to an isomeric mixture high in endo over a comparable time period to that found in the Cp analog.

[^4]The CD spectra of (${ }^{()_{D}-e n d o-[(N M C p) M o(a l l y l)(N O)(C O)] ~ a s ~ a ~ f u n c t i o n ~}$ of time after dissolution is shown in Fig. 4 Note how $\Delta \epsilon$ at 405 nm increases from -0 397 after 867 min to +0560 after 45.33 min The methallyl cation $\left({ }^{(}\right)_{\mathrm{D}}-[(\mathrm{NMCp}) \mathrm{Mo}(\text { methallyl })(\mathrm{NO})(\mathrm{CO})]^{+}$shows a reversal of this behavior, mitially having a $\Delta \epsilon$ at 403 nm of +0382 at 20 mm and -0 239 after 1850 min The slower interconversion for the methallyl process is consistent with the analogous behavior for endo-exo interconversion in the cyclopentadienyl complexes

In order to demonstrate the effect further, we attempted to prepare a complex with two ant substituents, i e., the (NMCp)Mo(η^{3}-cyclooctenyl)(NO)$(\mathrm{CO})^{+}$cation. Crystals suitable for X-ray analysis of this complex have eluded us so far The model cyclopentadienyl compound, however, has shown the typical behavior of forming the unstable cation kinetically and conversion to the thermodynamically stable exo-[(NMCp)Mo(cyclooctenyl)(NO)(CO)] species on standing. Based on NMR evidence this species is nearly exclusively the exo isomer at equilibrium ($K_{\text {eq }}>100$)

The similarity in rates of formation as determined by NMR (which are less accurate) to those observed in the changes of the ORD and CD provide very strong evidence that the changes observed in the spectra of the cations arise from endo-exo isomerism (see Table 2). The observation that the rate of endo-exo interconversion for the cyclooctenyl and the allyl derivative are nearly the same suggests that the mechanism for interconversion is the same, i.e., via rotation of the allyl (vida infra).

The solvent varnations in $\Delta \epsilon$ found for the iodides are explicable in terms of solvent effects on the equibibrium constant between endo and exo isomers. As suggested by the cyclopentadienyl analogs (Table 2) the rates of interconversion are expected to be very rapid for the odides; hence, equilibrium conditions are established immediately In an effort to determine the spectrum of an isomer with an essentially pure exo conformation, we examined the cyclooctenyl iodide. Since we were having difficulty isolating appropnate crystals of the

TABLE 2

HALF-LIVES OF endoexo INTERCONVERSION
All cation interconversion rates were measured in acetone Faster rates ($\sim X 4$) were obsen ed for cations in acetonitnle Optical rotations were measured in a thermostated cell held at $250^{\circ} \mathrm{C}$ (and are significantly more accurate than those obtaned by NMR)

Ligand	X	Allyl	$t_{1 / 2}\left(25^{\circ} \mathrm{C}\right)$	$r_{\text {eq }}$	Method
NMCp	CO	allyl	28 mm		$[\alpha]$
NMCp	CO	allyl	26 mm	38	NMR
Cp	co	allyl	63 mm	52	NMR
NMCp	co	methallyl	5700 min	022	NMR
Cp	CO	methallyl	4900 mm	021	NMR
Cp	CO	cyclooctenyl	35 mm	100°	NMR
Cp	I	allyl	$11 \mathrm{sec}{ }^{\text {b }}$	029	NMR
Cp	I	methallyi	$50 \mathrm{sec}{ }^{\text {b }}$	016	NMR
Cp	1	cyclooctens?		$100{ }^{c}$	NMR

 for the iodides were estimated from $\Delta G \star$ obtained by line broadening rate determinations in toluene- d_{8} at $80^{\circ} \mathrm{C}$ c No endo isomer could be observed by NMR.

NMCp derivative, we set about verifying the exo structure of the cyclooctenyl derivative of the Cp complex by X-ray crystallography $*$. Upon observing the unit cell size and the systematic absences, we tentatively surmised that the space group was $P 2_{1} 2_{1} 2_{1}$. This was rather unusual since this non-centric space group would require only molecules of a single absolute configuration in a given crystal We tested this hypothesis of a spontaneous resolution by dissolving individual single crystals and observing the rotations in a polarimeter Positive and negative rotations were observed depending on the crystal Completion of the structure and comparison of Friedl pair intensities, indicated that the absolute configuration of the particular enantiomorphic crystal which was chosen had the (S) absolute configuration at the metal (See Fig 8). After completion of X-ray data collection and measurement of the crystal dimensions for the absorption correction, the crystal was removed from the capillary, dissolved in chloroform, and its rotation measured. The rotation for the solution ($121 \mu \mathrm{~g}$ in 6 ml) was -0.002° at 589 nm and $+0023^{\circ}$ at 436 nm

Hand-separation of a set of crystals showing left and right rotations respectively were combined to provide samples for good signal to noise in CD and ORD expermments. These spectra are shown in Fig. 9 and 10. Correlation of the observed rotation with the ORD indicates that the X-ray structure determmation was performed on the (-$)_{\text {Dexo }}$ - [(Cp)Mo(cyclooctenyl)(NO)I]. Certain features in the ORD and CD curves of this complex would be expected to coincide with those of (NMCp)Mo(allyl)(NO)I, Fig. 6 and 7. There appears to be some correlation between rotational signs of particular bands and absolute configuration in the series. They are tentative, but may prove to be useful.

Fig. 8. The structure of (-)Dero-[(CD)Mo(cyclooctenyl)(NO)I]

[^5]

Fig 9 The ORD of $\left({ }^{(+)} \mathbf{D}^{-x}\right.$ [[(CP)Mo(cyclooctenyl)(NO)I] in chloroform

Fig 10 The $C D$ of $(+)_{D^{-}}$and $(\rightarrow)_{D^{-e x o}}$ [(Cp)Mo(cyclooctenyl)(NO)I] in chloroform

Correlations of configuration with CD spectra
The inversion of a long wavelength CD transition ($\sim 402 \mathrm{~nm}$) from negative to positive in the allyl cation on standing (Fig. 4) occurs concomitantly with endo to exo interconversion. The inversion of this transition in (+$)_{D}-[(N M C p)-$ Mo(methallyl)(NO)(CO)] occurs with a change from positive to negative (Fig. 5). This suggests that the sign of this transition is determined by both the absolute configuration at the metal center and the orientation of the allyl group, 1.e., endo or exo *. Further, sunce the sign of rotation of the Na D line

[^6]is not reversed, it is dominated by the rotational strength of other transitions The shape of the long wavelength feature in the $C D$ spectrum of the $(+)_{0}-1$ somer suggests that there are at least two bands at wavelengths over $400 \mathrm{~nm} \cdot$ one at $\sim 400 \mathrm{~nm}$ which reverses sign from negative to positive on conversion from endo to exo and another at $\sim 435 \mathrm{~nm}$ which remains positive Given these correlations, one might anticipate that simılar ones might obtain in the iodides.

Since the endo-exo interconversions in the iodides are rapid, one can only observe the spectra of equilibrium mixtures of endo and exo Nevertheless, solvent effects can modify K_{eq} and the results in Table 1 support the generality of inversion of a long wavelength transition on conversion from endo to exo

Although simılar electronic transitions in the visible and near UV might be anticipated for the cyclooctenyl and allyl iodides, one must consider the effect of opposite preferred conformations. The NMR of the cyclooctenyl complex indicates no presence of any endo (99% exo). Thus, the curves in Fig. 9 and 10 are essentially of the pure exo complex Since in chloroform the endo isomer predominates (90% endo) in (-) $)_{D}-[(N M C p) M o(a l l y l)(N O) I]$, the spectra in Fig 6 and 7 are effectively those of the endo isomer. In (-$)_{D}=[(N M C p) M o(m e t h a l l y l)-$ (NO)I] the CD curve (Fig. 11) imphes the (S) confıguration and represents nearly pure endo ($>99 \%$).

The $(-)_{D}$ isomers of the allyl and cyclooctenyl complexes have the same absolute configurations at the metal. If a correlation similar to that in the cation were to hold, the sign of $\Delta \epsilon$ at 402 nm would be reversed presumably owing to the conformational difference The CD spectra of the iodides appear to be dominated by three optically active transitions at $\sim 360, \sim 400 \mathrm{~nm}$, and another variable position band between 420 and 450 nm . Thus, whereas the signs of $\Delta \epsilon$ for all three of these bands are negative in (-) ${ }_{\text {Dendo }}$-[(NMCp)Mo(allyl)-

(NO)I], they alternate from negative to positive to negative in (-) ${ }_{\mathrm{D}}$-exo-[CpMo(cyclooctenyl)(NO)I]

Although these correlations appear to allow rationalization of the results presented here, the limited number of compounds suggests prudence in their application In particular, substituent effects might senously influence the chiroptical properties Thus, the substituents on the terminal allyl carbons may influence the spectra as with olefin and allyl palladium and platinum complexes [13,14]

Mechanism of endo-exo interconversion

In relatively fast reactions where spin saturation transfer experiments can be carried out using NMR methods [15,16] we were able to demonstrate that endo-exo interconversion occurred preferentially by $\pi-\sigma$ interconversion in the iodides [17]. Rotation of the allyl was not ruled out on a much longer time scale, but is at least $6 \mathrm{kcal} / \mathrm{mol}$ higher These processes are illustrated in Fig 12.

The cyclooctenyl complex represents a particularly interesting species in this regard because the geometric constraints of the ring prevent the $\pi \cdots \sigma-\pi$ rearrange-

Fig 12 A companson of interchanges resulting from $\sigma-\pi-\sigma$ and rotational interconversion of endo and exo isomers
ment from effecting an endo-exo interconversion * Thus, the most reasonable path for both the iodide and carbonyl complex with a cyclooctenyl ligand is via rotation Generally, however, rotation appears to be preferred in the carbonylnitrosyl cations and $\pi-\sigma-\pi$ rearrangement is preferred in the nitrosyl iodides, as has also been suggested by examining interconversions in deuterium-labeled allyls [17].

The examination of the rates of interconversion can also provide some insight into the path of the rotation. For the (R)-configuration shown in Fig. 8, there are two routes by which endo to exo interconversion can occur. Thus, the upper path involves a clockwise rotation which would require a close approach of the central substituent to the Cp ring, whereas, the lower path involves a counterclockwise rotation, which would involve a close approach of the terminal substituents to the Cp ring.

Since the barrier for rotation of the cyclooctenyl complex and the allyl complex are nearly the same, it follows that they are interconverting via the same path. The slower interconversion of the methallyl complex suggests an alternative path or greater stenc hindrance along the same path. These observations are consistent with the rotation via the upper or clockwise path for endo to exo interconversion in the (R) enantiomer

Retention of configuration in substitution reactions

The determinations of the absolute configurations of the (+$)_{\mathrm{D}}-[(\mathrm{NMCp})-$ Mo(allyl)(NO)(CO)] cation and (-) $)_{D}-[(\mathrm{NMCp}) \mathrm{Mo}($ allyl $)(\mathrm{NO}) \mathrm{I}]$ provide proof that displacement of CO by iodide occurs with retention of configuration. An attractive mechanism which explains the retention of configuration in this

[^7]second order reaction involves attack on the carbonyl by iodide followed by migration to the metal and elimination of CO

Other halides or pseudohalides might be expected to displace $\mathbf{C O}$ with retention, as well. Azide produces an NCO complex via an organometallic analog of the Curtius rearrangement [18], whereas NCO attacks the allyl as well as displacing CO. A discussion of these reactions will be published separately.

The halide can be displaced stereospecifically by benzenesulfonate to produce $(-)_{\mathrm{D}}-\left[(\mathrm{NMCp}) \mathrm{Mo}(\right.$ allyl $\left.)(\mathrm{NO})\left(\mathrm{PhSO}_{3}\right)\right]$ which on treatment with iodide returns the (-$)_{\mathrm{D}}-[(\mathrm{NMCp}) \mathrm{Mo}($ allyl $)(\mathrm{NO}) \mathrm{I}]$ with $\sim 99 \%$ stereoselectivity. The similarity of the CD curves for the benzene sulfonate and the odide complexes suggest that they have the same configuration Thus, although the overall retention in the cycle might occur with double inversion, we favor the interpretation that slver benzenesulfonate displacement occurs with retention. Scheme 1 sum-

SCHEME 1

marizes these interconversions (N B the absolute configuration of the sulfonate has not been proven)

Experımental

General procedures. All operations involving the handling of organometallic complexes in solution were carned out using standard inert atmosphere techniques under an atmosphere of nitrogen. 'THF' was distilled from sodium benzophenone ketyl before use Other solvents were deoxygenated with a stream of dry nitrogen and stored over molecular sieves Neomenthylcyclopentadiene $(\mathrm{NMCpH})[3]$ and $($ allyl $) \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}$ [19] were prepared by literature methods Other reagents were used as recelved from commercial sources The sllica used for most chromatographic separations was Mallinckrodt SilicAR CC-7

PMR spectra were obtained with a Bruker HX-270 spectrometer operating at 270 MHz and chemical shifts are reported as ppm downfield from TMS. ORD and CD measurements were obtained with a Cary 60 spectropolarımeter with a CD attachment Accurate rotations were measured with a Perkin-Elmer 241 polarimerer with a thermostated cell Sample concentrations were measured by weighing the complex on a microbalance ($\pm 1 \mu \mathrm{~g}$) and weighing the solvent and converting to $\mathrm{g} / \mathrm{cm}^{3}$ using the density of the solvent Concentrations reported with specific rotations are in unts of $\mathrm{g} / 100 \mathrm{~cm}^{3}$. Infrared spectra were obtained with a Nicolet 7199 FT IR with $0.5 \mathrm{~cm}^{-1}$ resolution. MeIting points were determined on samples in sealed evacuated capillaries and are uncorrected.

Kınetic measurements give the best fit for the first order approach to equilibrium in $A \xrightarrow{k_{\mathrm{f}}} B ; B \xrightarrow{k_{\mathrm{r}}} A$ Half-lives are given as $0693 /\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right)$

Preparation of $\mathrm{NMCpMO}(\mathrm{CO})_{2}($ allyl $)$ Neomenthylcyclopentadiene $[\alpha]_{\mathrm{D}}$ $+420^{\circ}\left(c 353, \mathrm{CHCl}_{3}\right)$ was prepared according to Cesarotti, Kagan et al. [3], who reported $[\alpha]_{D}+33.0^{\circ}\left(c 3.1, \mathrm{CHCl}_{3}\right)$. It was converted to the inthium dernvative and treated with $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}$ according to the general procedure described by Cesarottı, Kagan et al. for ThCl_{4} [3] After the reaction mixture was stirred for 4 h , the solvent was removed and the residue washed well with ether The combined ether washings were concentrated and the yellow complex chromatographed on alumina with petroleum ether. In a typical reaction of 2 or 3 g of NMCpH yields of $\sim 65 \%$ based on NMCpH were obtained. Crystallization from hexane gave yellow needles melting at $66-68^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}^{20}+44.9^{\circ}$ ($c 0.247$, hexane). Carbonyl bands were observed in the IR at $19627,1894.3$ (endo), 1953.9 and 18783 (exo) cm^{-1} (cyclohexane). At $-40^{\circ} \mathrm{C}$ proton resonances (δ, ppm) were observed in CDCl_{3} for the exo conformer at $539,5.22,5.13$, and $5.04(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp$) ; 4.05\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right), 2.79(\mathrm{~d}, 66 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{s}}\right), 0.88\left(\mathrm{~d}, 10.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 0.884,0.883,0.676(\mathrm{~d}, \sim 6 \mathrm{~Hz}, 3 \mathrm{Me}$ of NMCp$)$; and for the endo conformer at $6.51,6.50,6.33,5.35(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp); 3.62 ($\mathrm{m}, \mathrm{H}_{\mathrm{c}}$) ; $272\left(\mathrm{~d}, 6.2 \mathrm{~Hz}, \mathrm{H}_{s}\right) ; 0.74(\mathrm{~d}, 6 \mathrm{~Hz}, \mathrm{Me}$ of NMCp$), \mathrm{H}_{\mathrm{a}}$ and two Me of NMCp obscured; $K_{\mathrm{eq}}=40$. Assignments were based on comparisons with analogous cyclopentadienyl compounds [10]. Anal. Found. C, 61.0, H, 7.47. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$ Mo calcd. $\mathrm{C}, 60.6, \mathrm{H}, 7.07 \%$.

Preparation of $[N M C p M O(N O)(C O)(a l l y l)] P F_{6}$. The dicarbonyl, NMCpMo$(\mathrm{CO})_{2}$ (allyl), ($1584 \mathrm{~g}, 4.0 \mathrm{mmol}$) was suspended in acetonitrle (15 ml) at $0^{\circ} \mathrm{C}$.

Nitrosonium hexafluorophosphate ($0.70 \mathrm{~g}, 4.0 \mathrm{mmol}$) was added in portions. After 5 mm at $0^{\circ} \mathrm{C}$ the mixture was poured into cold ether (200 ml) and the crude product filtered and washed with cold ether. This crude product $[\alpha]_{D}+605^{\circ}$ (c 0236 , acetone), was isolated in 74% yield (1.60 g). After two rapid crystallızations from acetone/ether the sample showed an $[\alpha]_{D}+117^{\circ}$ immediately after dissolving The NMR spectrum of this sample in contrast to the crude matenal showed no signals which could be assigned to the other diastereomer. This material melted at $187-190^{\circ} \mathrm{C}$ with decomposition and showed single carbonyl and mitrosyl bands in the IR at 2091.1 and $1722.6 \mathrm{~cm}^{-1}$ in acetonitrile The structure in the solid was verified by a single crystal X-ray determination

The NMR vanied with time but initially showed resonances (δ) in acetone- d_{6} corresponding to the endo isomer at $686,663,645$ and $6.09(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp $), 545\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right), 520\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 74, J_{\mathrm{ss}} 31 \mathrm{~Hz}\right), 490\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 74\right.$, $J_{\text {ss }} 31 \mathrm{~Hz}$); $364\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}, J_{\mathrm{ca}} 13.6\right) ; 330\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}, J_{\mathrm{ca}} 12.4 \mathrm{~Hz}\right), 098,0.92,0.78$ (d, $\sim 6 \mathrm{~Hz}, 3 \mathrm{Me}$ in NMCp).

On standing the resonances of the exo isomer appeared at $700,632,615$, and $6.06(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp$), 573\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right) ; 511\left(\mathrm{ddd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 7.4, J_{\mathrm{ss}} 37\right.$, $J_{\mathrm{sa}} 1 \mathrm{~Hz}$); 437 (ddd, $\mathrm{H}_{\mathrm{s}^{\prime}}, J_{\mathrm{cs}}{ }^{\prime} 7.4, J_{\mathrm{ss}^{\prime}} 37, J_{\mathrm{a}}$'s 1 Hz), 345 (dd, Ha, $J_{\mathrm{ca}} 136$, $\left.J_{\mathrm{sa}} 1 \mathrm{~Hz}\right), 3.85\left(\mathrm{dd}, \mathrm{H}_{\mathrm{a}^{\prime}}, J_{\mathrm{ca}^{\prime}} 12.4, J_{\mathrm{s}^{\prime} \mathrm{a}^{\prime}} 1 \mathrm{~Hz}\right.$), $102,090,081(\mathrm{~d}, \sim 6 \mathrm{~Hz}, 3 \mathrm{Me}$ in NMCp).

The optical rotation of the product was found to be time dependent. At room temperature the following changes (c 0215 acetone) were observed

ν	$\alpha(t 0)$	$\alpha(t 120 \mathrm{~min})$	$[\alpha](t 120 \mathrm{~mm})$
589	0251	0364	+170
578	0363	0388	+181
546	0297	0475	+222
436	0319	1136	+531

Polarımetric kinetics measurements were carried out over 6 h at $200^{\circ} \mathrm{C}$ and indicated $[\alpha]_{436}^{20}(t \infty)+596^{\circ}$ and $[\alpha]_{546}^{20}(t \infty)+242$ The half-times for approach to equilibrium were 52 min at $20^{\circ} \mathrm{C}$ and 20 min at $30^{\circ} \mathrm{C}$
(-) $)_{D}[(N M C p) M o(a l l y l)(N O)(C O)] P F_{6}$. The diastereomenc ratio in the initial preparation of the cations, as determined by NMR was $(+) /(-)=144$. Several crystallizations of the mother liquors from the isolation of the $(+)$-cation gave a pale yellow solid $[\alpha]_{D}-45.9^{\circ} ;[\alpha]_{436}-288^{\circ}$, which had a nearly mirror image CD spectrum to that of the equilibrated (+)-cation. Both the ORD and CD curves were time independent, which suggested that endo-exo equilibrium had been established during the purification The resonances of the major isomer ($e x 0$) in acetone- d_{6} appeared at $6.26,606,590,578$ (m, 4 CpH of NMCp), $5.28\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right) ; 4.98\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 7.6, J_{\mathrm{ss}}{ }^{\prime} 3.2\right), 4.84\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 76, J_{\mathrm{ss}} 32\right.$), 3.40 $\left(\mathrm{d}, \mathrm{H}_{\mathrm{a}}, J_{\mathrm{ca}} 14 \mathrm{~Hz}\right) 2.96\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}^{\prime}}, J_{\mathrm{ca}}{ }^{\prime} 14 \mathrm{~Hz}\right) ; 099,097,081(\mathrm{~d}, \sim 6 \mathrm{~Hz}, 3 \mathrm{Me}$ of NMCp). Some clearly resolved characteristic resonances of the minor isomer (endo $\sim 15 \%$) were $6.43,6.22,5.99,5.72$ (m, 4 CpH of NMCp), 3.31 ($\mathrm{d}, 14 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{a}}\right) ; 2.98\left(\mathrm{~d}, 14 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$

Preparation of $\mathrm{NMCpMo}(\mathrm{CO})_{2}\left(2-\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{H}_{4}\right)$. Following the same procedure as in the preparation of the allyl, except for the use of methallyl chloride in the preparation of the molybdenum acetonitrile complex. An orange oll was obtained
in greater than 60% yield This complex showed carbonyl bands in cyclohexane at 19566 and $18669 \mathrm{~cm}^{-1}$ and had $[\alpha]_{\mathrm{D}}+420^{\circ}$.

Pieparation of $(+)_{\mathrm{D}}$-exo-[(NMCp)Mo(methallyl)(NO)(CO)]PF Following the procedure for the allyl complex, the diastereomerically pure complex was obtained as yellow crystals ($\sim 40 \%$ yield) The initial rotation was [a] ${ }_{D}^{22}+113^{\circ}$ which changed very slowly with time. $(t 0)+113^{\circ},(t 1445 \mathrm{~mm})+97.4^{\circ}$ The yellow crystals melt with decomposition at $121^{\circ} \mathrm{C}$ and show carbonyl and nitrosyl absorptions at 2104.5 and $1715.7 \mathrm{~cm}^{-1} \mathrm{~m}$ acetonitrile. Anal Found $4319,540 \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{MoNPF}_{6}$ calcd • C. $4310 ; \mathrm{H}, 543 \%$

The ${ }^{1} H$ NMR in acetone- d_{6} of the sample immediately upon dissolving (exo isomer) exhibits resonances (δ, ppm) at $699,636,611,5.62(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp), $506\left(\mathrm{~d}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{ss}}{ }^{\prime} 37 \mathrm{~Hz}\right.$), $4.95\left(\mathrm{~d}, \mathrm{H}_{\mathrm{s}^{\prime}}, J_{\mathrm{ss}}{ }^{\prime} 3.7 \mathrm{~Hz}\right), 3.67\left(\mathrm{~s}, \mathrm{H}_{\mathrm{a}}\right) ; 310$ ($\mathrm{s}, \mathrm{H}_{\mathrm{d}}$) ; 213 (s, Me of methallyl) $101,090,0.77$ (d, $6 \mathrm{~Hz}, 3 \mathrm{Me}$ in NMCp)

Additional resonances appear on standing charactenstic of the endo isomer. $6.96,6.60,627,6.18(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp$), 5.00\left(\mathrm{~d}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{ss}} 46\right), 4.24(\mathrm{~d}$, $\left.\mathrm{H}_{\mathrm{s}}, J_{\mathrm{ss}} 4.6 \mathrm{~Hz}\right), 3.77\left(\mathrm{~s}, \mathrm{H}_{\mathrm{a}}\right) ; 410\left(\mathrm{~s}, \mathrm{H}_{\mathrm{a}}\right), 2.09$ (Me in methallyl), 1.04, 086 , 0.77 (d, 3 Me in NMCp)

Preparation of ()$_{D^{2}}-[(N M C p) M o(a l l y l)(N O) I]$ Sodium iodide $(50.0 \mathrm{mg}$, 0331 mmol) was dissolved in acetone (6 ml) at room temperature. (+$)_{\text {D }}$-endo$[(\mathrm{NMCp}) \mathrm{Mo}(\operatorname{allyl})(\mathrm{NO})(\mathrm{CO})],[\alpha]_{\mathrm{D}}+117^{\circ},(180 \mathrm{mg}, 0331 \mathrm{mmol})$ was added to the NaI solution. Gas evolution was observed intially and the red solution was allowed to stir at room temperature for seven minutes and then evaporated to dryness The residue was extracted with methylene chloride and the complex was chromatographed with toluene on silica A single dark red band was eluted and collected. There was no apparent fractionation or decomposition and the product gave a single spot on tle $[\alpha]_{D}-144^{\circ}$ (c 0.329, acetone). The product was crystallized twice from methylene chloride/hexane to yield 154 $\mathrm{mg}(94 \%)$ of red crystals, m.p. $155-156^{\circ} \mathrm{C}$, IR $\nu(\mathrm{NO}) 16741 \mathrm{~cm}^{-1},[\alpha]_{\mathrm{D}}^{25}-144^{\circ}$ ($c 0.14$, chloroform). The assumed structure was venfied by a single crystal X-ray determination

The ${ }^{1} \mathrm{H}$ NMR gave allyl resonances (δ, ppm) in chloroform for the endo isomer (90%) at $610,603,575,5.52(\mathrm{~m}, 4 \mathrm{CpH}$ of NMCp$) ; 544\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right)$; $4.73\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{cs}} 7.7, J_{\mathrm{ss}} 3.72\right) ; 3.93\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}, J_{\mathrm{cs}} 13.7\right), 323\left(\mathrm{dd}, \mathrm{H}_{\mathrm{s}^{\prime}}, J_{\mathrm{cs}}\right.$ 6.2, $J_{\mathrm{ss}}{ }^{\prime} 3.72$), $249\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}, J_{\mathrm{ca}} 112\right.$), $103,0.93,080(\mathrm{~d}, 3 \mathrm{Me}$ of NMCp). Some well-resolved resonances for the exo isomer were. $500\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}, 4.87\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right)\right.$, $4.03\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}\right), 3.49\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right), 264\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}{ }^{\prime}\right)$

The product collected from the mother liquors of the crystallizations had $[\alpha]_{D}-136^{\circ}$ (c 0.287, acetone). Neither the crude nor the crystallized sample exhibited NMR signals assignable to a second diastereomer

Isolatıon of $(+)_{D}-[N M C p M o(a l l y l)(N O)(I)]$ Using partially resolved NMCpMo(allyl)(NO)(CO) obtained from the mother liquors remaining from the resolution of $(+)_{D}-[(N M C p) M o(a l l y l)(N O)(C O)]$, reaction with $N a I$ as above produced a mixture of $(+)_{D^{-}}$and $(-)_{D^{-}}[(\mathrm{NMCp}) \mathrm{Mo}($ allyl $)(\mathrm{NO}) \mathrm{I}]$. Fractional crystallization from 1/1 pentane-dichloromethane led to crystallization of the (-)-isomer leaving the $(+)$-isomer in solution. Recrystallization of the $(+)$-isomer from pentane gave red needles melting at $102-104^{\circ} \mathrm{C}$. This complex showed a nitrosyl band at $1670.2 \mathrm{~cm}^{-1}$ in the IR (cyclohexane) and had $[\alpha]_{D}+90^{\circ}$. The NMR showed resonances for the major isomer (endo) in CDCl_{3} at $6.06,5.97,575,5.60(\mathrm{~m}$,
$4 H_{\text {of }} \mathrm{Cp}$ in NMCp), $5.39\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right), 472\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right), 390\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}\right), 3.18\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right)$, $229\left(\mathrm{~m}, \mathrm{H}_{\mathrm{d}}\right), 099,088,078(\mathrm{~d}, 3 \mathrm{Me}$ of NMCp)

Preparation of ()$_{D}-[(N M C p) M o$ (methallyl)(NO)I] Following the same procedure as for the allyl complex red crystals were obtained in over 80% yield, m.p. $107-109^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{17}-153^{\circ}$, IR $\nu(\mathrm{NO}) 1658.2$ (cyclohexane). The ${ }^{1} \mathrm{H}$ NMR showed resonances (δ, ppm) in CDCl_{3} at (endo) $603,597,5.72,547$ ($\mathrm{m}, 4 \mathrm{CpH}$ in NMCp); 4.52 ($\mathrm{d}, \mathrm{H}_{\mathrm{s}}, J_{\mathrm{ss}} 44$); 3.19 ($\mathrm{s}, \mathrm{H}_{\mathrm{a}}$), 297 (dd, $J_{\mathrm{ss}} 4$ 4, $J_{\mathrm{sa}} 2.2 \mathrm{H}_{\mathrm{s}}$); $2.32\left(\mathrm{~d}, J_{\mathrm{s} \text { a }} 22, \mathrm{H}_{\mathrm{a}}\right.$). 197 (s, Me of methallyl), $099,091,077$ (d, 3 Me of NMCp)

The exo isomer ($\sim 20 \%$) produced well resolved resonances at•591,591, $5.70,5.60\left(\mathrm{~m}, 4 \mathrm{H}\right.$ of Cp in NMCp); $422\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right) ; 302\left(\mathrm{dd}, J_{\mathrm{ss}} 40, J_{\mathrm{s} \text { a }} 18\right.$, $\mathrm{H}_{\mathrm{s}^{\prime}}$), 1.95 (s , Me of methallyl), $0.98,0.88,0.77$ ($\mathrm{d}, 6 \mathrm{~Hz}, 3 \mathrm{Me}$ in NMCp)

Optical stabilıty of the iodides. Endo-exo equilibrium is established rapidly at room temperature in the iodides, hence, variations of [α] with time are not observed. No loss of rotation was observed within 2 h in the absence of free ıodide An acetone solution of the NMCpMo(allyl)(NO)I complex (00058 M) and sodium iodide (0042 M) lost approximately 7% of its original iotation value after standing for two hours at room temperature

Preparation of $(-)_{D^{-}}(\mathrm{NMCp}) \mathrm{Mo}($ allyl $)(\mathrm{NO})\left(\mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and reaction uith sodıum sodıde Silver benzenesulfonate ($88 \mathrm{mg}, 033 \mathrm{mmol}$) was added to a solution of (-) ${ }_{D}$-[(NMCp)Mo(allyl)(NO)I] (150 mg .030 mmol) in methylene chloride (5 ml) The reaction mixture was kept at $0^{\circ} \mathrm{C}$ until the disappearance of the starting material (TLC, silica, benzene) The residue was removed by centrifugation and the yellow solution was evaporated to yield a yellow oil, IR $\nu(\mathrm{NO}) 1630 \mathrm{~cm}^{-1}$ (chloroform), $[\alpha]_{\mathrm{D}}-38^{\circ}$ (c 0067 , acetone)

The product above was treated with a stoichiometric quantity of sodium lodide in acetone at 0° for 45 min and warmed to room temperature at which time all of the starting matenal had reacted (TLC). The solid resiclue was removed by centrufugation and the red solution evaporated to dryness The red solid was chromatographed on silica with benzene A single red band was eluted which yielded red crystals on evaporation. The TLC properties and the NMR spectra were identical to those of the starting iodide complex No other signals were observed in the NMR assignabie to the other diastereomer indicating that the pure diastereomer had been obtained, $[\alpha]_{D}-145^{\circ}$ (c 0194 , acetone)

Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)$. The cyclic allyl bromide was prepared by combining $20 \mathrm{ml}(0.16 \mathrm{~mol})$ of cyclooctene and $27 \mathrm{~g}(0.15 \mathrm{~mol})$ of recrystallized N-bromosuccinamide with 025 g of benzoyl peroxide in CCl_{4}. After filtration of the succinamide, which floats to the surface of the solvent as the reaction proceeds, and evaporation of the CCl_{4}, the crude allyl bromide was heated with $22.6 \mathrm{~g}(75 \mathrm{mmol})$ of $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}$ in acetonıtrıle at $80^{\circ} \mathrm{C}$ for 2 h . Evaporation of the solvent gave $31 \mathrm{~g}(78 \%)$ of the $\left(\mathrm{C}_{8} \mathrm{H}_{13}\right) \mathrm{Mo}-$ $(\mathrm{CO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Br}$ complex. The solid was dissolved in THF and cooled to $-78^{\circ} \mathrm{C}$ and then 0058 mol of $\mathrm{LaC}_{5} \mathrm{H}_{5}$ in THF was added slowly The muxture was allowed to warm to room temperature with stirring overnight The THF was evaporated and the carbonyl complex extracted from the residue by Soxhlet extraction with petroleum ether. A yield of 113 g of the cyclopentadienyl-
octenyl complex melting at $117--118^{\circ}$ (dec) was obtained, which corresponds to a 60% yield based on LiCp or 47% yield based on $\mathrm{Mo}(\mathrm{CO})_{6}$. The complex showed only two carbonyl bands in the IR indicating the presence of only the exo isomer (1954 and $1878 \mathrm{~cm}^{-1}$, cyclohexane). The ${ }^{1} H$ NMR spectrum at $25^{\circ} \mathrm{C}$ in CDCl_{3} gave resonances (δ, ppm) at $523(\mathrm{~s}, \mathrm{Cp}), 415\left(\mathrm{t}, 8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, 3.74 (ddd, $82,8.1,85 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}$), $230,2.18,146,120$ (m, methylenes)

The assumed structure was verified by a single crystal X-ray determination.
Preparation of $\left[(\mathrm{Cp}) \mathrm{Mo}\left(\mathrm{C}_{8} \mathrm{H}_{13}\right)(\mathrm{NO})(\mathrm{CO})\right] \mathrm{BF}_{4}$ The nitrosyl cation was obtained by combining $10 \mathrm{~g}(33 \mathrm{mmol})$ of $(\mathrm{Cp}) \mathrm{Mo}\left(\mathrm{C}_{8} \mathrm{H}_{13}\right)(\mathrm{CO})_{2}$ with 8 ml of acetonitrile at $0^{\circ} \mathrm{C}$ with $036 \mathrm{~g}(30 \mathrm{mmol})$ of NOBF_{4}. The reaction mixture was stirred for 2 min and then poured into dry ethyl ether which was agitated with a stream of nitrogen gas. A flocculent yellow-brown precipitate was separated by centrifugation and washed three times with cther. Drying under vacuum gave 114 g (84% yield) of the desired salt Carbonyl and nitrosyl bands were observed in the IR at 2084 and $1712 \mathrm{~cm}^{-1}$ (methylene chlonde) Anal Found: $\mathrm{C}, 4061, \mathrm{H}, 427 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{MoNO}_{2} \mathrm{BF}_{4}$ calcd $\mathrm{C}, 4051 ; \mathrm{H}, 437 \%$

After exo-endo equilibration the $25^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR exhibited resonances corresponding to a single isomer (exo) in acetone• $632(\mathrm{~s}, \mathrm{Cp}) ; 499(\mathrm{t}, 8.3 \mathrm{~Hz}$, H_{c}), 6.44 (dddd, $8.3,9.2,92,2.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}$), 5.91 (dddd, $\mathrm{Hz}, 8.3,9.2,9.2,2.4$ H_{s}) ; 2 84-1.50 (m, methylenes). Endo 6.42 (s, Cp); 5.57 ($\mathrm{t}, 8.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), 6.39 (dt, $8.7,87 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}$), 5.92 ($\mathrm{dt}, 8.7,9.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}$); 2.84-1.50 (m, methylenes).

Preparation of (Cp)Mo(cyclooctenyl)(NO)I. This complex was prepared following the procedure above for the allyl iodide. Chromatography on alumina with methylene chloride, however, produced the product in lower yield (55\%) as a thick red oll Crystallization was effected by evaporating the residual methylene chloride under vacuum, adding pentane, and then adding sufficient acetone to bring the oll into solution. Storing the pentane/acetone solution at $10^{\circ} \mathrm{C}$ for 24 h produced large well-formed red-orange crystals melting at 106 $108^{\circ} \mathrm{C}$. The structure was verified by a single crystal X-ray determination

A single nutrosyl band was observed in the IR at $1630 \mathrm{~cm}^{-1}$ (methylene chloride). The ${ }^{1} \mathrm{H}$ NMR at $25^{\circ} \mathrm{C}$ in CDCl_{3} exhibited resonances (δ) at: 5.78 (s, Cp); 626 (ddd, $8,8,88,8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}$), 4.79 (t, $8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$); 4.38 (ddd, $8.8,10.4$, $8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}^{\prime}}$), 2.59, 2.13, 1.59 (m , methylenes). Only resonances for the exo isomer were observed.

Crystallographic analyses All diffraction measurements were performed on an Enraf-Nonius CAD-4 fully automated diffractometer using graphite-monochromatized Mo- K_{α} radiation. Space groups were determined from the systematic absences $h 00,0 k 0$, and $00 l=2 n+1$, which were observed in the data collection for both structures

All calculations were performed on a Dıgital Equipment PDP 11/45 computer using the Enraf-Nonius SDP program library. Both structures were solved by the heavy-atom method. Anomalous dispersion corrections [20a] were added to the neutral-atom scattering factors [20b] for all non-hydrogen atoms. Fullmatrix least-squares refinements minimized the function $\Sigma w\left(F_{0}-F_{c}\right)^{2}$ where the weighting factor $w=1 / \sigma(F)^{2}, \sigma(F)=\sigma\left(F_{0}^{2}\right) / 2 F_{0}$, and $\sigma\left(F_{0}^{2}\right)=\left[\sigma\left(I_{\text {raw }}\right)^{2}+\right.$ $\left.\left(p F_{0}^{2}\right)^{2}\right]^{1 / 2} / L p$. Crystallographic data parameters are listed in Table 3. Other results are compiled in Tables 4-9.

Structure analysis of () $_{\mathrm{D}}$ exo-[(Cp)Mo(cyclooctenyl)(NO)I]. A specimen

TABLE 3
EXPERIMENTAL X-RAY DIFFRACTION DATA FOR (—)-NMCpMO(n $\left.{ }^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{NO}^{\prime}\right) I$ AND CPMO(n^{3} $\mathrm{C}_{8} \mathrm{H}_{13}$)(NO)I

TABLE 4
RATIOS OF THE LARGEST BIJVOET DIFFERENCES FOR CPMO($\left.\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)(\mathrm{NO})$ I
$F(h k l) / F(\bar{h} \bar{h} \bar{l})$

h	た	l	Calculated (R)	Calculated (S)	Observed
2	2	7	084	119	117
1	1	12	084	119	117
1	7	1	085	118	116
1	3	8	086	116	111
1	2	6	088	113	113
1	3	12	089	1.12	110
8	2	5	111	090	092
8	3	7	113	088	088
4	1	9	119	084	088
4	2	7	121	082	089
1	1	2	126	080	086
4	1	1	128	078	082
5	2	6	136	073	075
5	2	2	1.54	063	062

TABLE 5
RATIOS OF THE LARGEST BIJVOET DIFFERENCES FOR (\rightarrow-NMCpMO $\boldsymbol{n}^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$)(NO)I
F(h/l)/E(弓hī)

h	I	l	Calculated (R)	Calculated (S)	Observed
3	5	1	064	158	149
1	7	2	079	127	128
3	5	3	080	125	108
4	3	2	088	114	118
3	7	3	088	114	115
4	3	10	088	114	114
1	10	6	089	112	113
\pm	2	14	090	112	111
2	11	2	112	089	099
3	6	7	114	088	087
2	5	1	115	087	089
1	8	4	115	087	084
3	3	3	115	087	087
4	2	4	116	086	085
1	1	4	121	083	082

of approximate dimensions $031 \times 032 \times 037 \mathrm{~mm}$ was selected for X-ray diffraction work and mounted in a thin-walled glass capillary. A prelımınary unit cell was determined from 25 randomly selected reflections An orthorhombic crystal type was indicated and a prelımınary set of reflections were collected to identify the space group. The systematic extinctions ($h 00,0 k 0$, and $00 l=$ $2 n+1$ absent) indicated the space group $P 2_{1} 2_{1} 2_{1}$. This is a non-centric space group and suggested that a spontaneous resolution had produced crystals, each of which contained only one enantiomer. Dissolving single crystals and measuring the rotations with a polarimeter confirmed this expectation Using twelve high-angle reflections and their Friedl equivalents ($h k l$ and $\bar{h} \bar{z} \bar{l}$)a new orientation matrix and unit cell parameters were obtained The intensities of each reflection and its Friedl equivalents were measured sequentially to reduce

TABLE 6
POSITIONAL PARAMETERS FOR ($-\mathrm{CpMO}\left(\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)(\mathrm{NO}) I$

I	$016735(4)$	$-046002(5)$	$-037214(2)$
$M o$	$-016366(4)$	$-049056(3)$	$-036845(2)$
O	$-01818(4)$	$-04368(4)$	$-01903(2)$
N	$-01685(4)$	$-04506(3)$	$-02629(2)$
$C p(1)$	$-03520(8)$	$-06498(5)$	$-03894(5)$
$C p(2)$	$-02846(8)$	$-06273(6)$	$-04663(3)$
$C p(3)$	$-01327(10)$	$-06626(5)$	$-04636(3)$
$C p(4)$	$-00948(9)$	$-07066(5)$	$-03844(4)$
$C p(5)$	$-02356(9)$	$-07024(5)$	$-03406(3)$
$C(1)$	$-03846(6)$	$-03538(5)$	$-03853(3)$
$C(2)$	$-02670(6)$	$-03225(5)$	$-04410(3)$
$C(3)$	$-01234(6)$	$-02659(4)$	$-04211(3)$
$C(4)$	$-01940(7)$	$-0.1697(5)$	$-03541(3)$
$C(5)$	$-03670(9)$	$-00457(5)$	$-03694(3)$
$C(6)$	$-04289(7)$	$-0570(8)$	$-03864(4)$
$C(7)$	$-03795(31)$	$-0.2728(6)$	$-03335(4)$
$C(8)$		$-00390(25)$	$-03338(4)$
$C(6 B)$			

TABLE 7
ATOMIC COORDINATES FOR (一)-NMCpMO($\left.\boldsymbol{n}^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NO}) \mathrm{I}$

Atom	x / a	$3 / 6$	z / c
Mo	010017 (7)	004971 (4)	$027634(2)$
I	-024344(6)	-005223(4)	0 29082(2)
0	02850 (7)	-0 1564(3)	$02601(2)$
N	0 2083(6)	-00746(4)	$02637(2)$
Cp(1)	$01262(8)$	$00669(4)$	$03839(2)$
Cp(2)	-00066(9)	$01436(4)$	0 3641(2)
Cp(3)	$00787(10)$	$02190(4)$	0 3258(2)
Cp(4)	$02670(11)$	0 1894(4)	03209 (3)
Cp(5)	02960 (8)	$00971(5)$	$03562(2)$
Cm(1)	$00835(8)$	-00177(4)	0 4336(2)
Cm(2)	$01425(8)$	$00180(4)$	$04983(2)$
Cm(3)	$03528(9)$	$00155(5)$	$05050(3)$
Cm14)	$04283(10)$	-00957(5)	$04902(3)$
Cm(5)	0 3704(10)	-01383(4)	04269 (3)
Cm(6)	01618 (9)	-01275(4)	$04191(3)$
Cm(7)	00529 (9)	$01223(4)$	$05197(2)$
Cm(8)	$-01574(11)$	01124 (6)	$05258(3)$
Cri(9)	$01316(12)$	$01632(5)$	0 5808(3)
Cm(10)	$04328(12)$	-02509(5)	$04191(3)$
C(1)	$0268(1)$	$01132(6)$	01927 (4)
C(2)	0 090(2)	$00726(8)$	$01^{710(5)}$
C(3)	-0064(1)	$01008(7)$	01833 (5)

errors from X-ray source fluctuations Three reflections were selected as intensity standards and measured every 4000 sec throughout the data collection. No significant vanations in the intensities of the standards were observed The crystal faces were identified as $0 \overline{1} \overline{2}, 0.12,0 \overline{1} 2,01 \overline{2}, 10 \overline{1}, \overline{1} 02$, and $\overline{2} 0 \overline{1}$ The crystal was mounted such that the normal to the 100 plane was oriented 8.1° from the diffractometer ϕ axis. The remander of the data collection parameters are given in Table 3.

In the initial stages of refinement only the $+h+h+l$ reflections were used A three-dimensional Patterson map was used to obtain the coordinates of the Mo and I atoms. These coordinates were refined to yield an R factor of 184% A structure factor calculation using these coordinates and a difference Fourier map revealed the location of the remaining non-hydrogen atoms These coordinates were then refined by a least-squares process using the full data set which was corrected for absorption effects With anisotropic temperature factors for the Mo and I and isotropic temperature factors for the remaining atoms, agreement factors $R_{1} 5.4 \%$ and $R_{2} 70 \%$ were obtaned for the confıguration designated (R).

The absolute configuration was investigated at this point The signs of all of the atomic coordmates were reversed, which corresponds to converting the molecule to its mirror mage, and the least-squares refinement repeated This yielded an $R_{1} 52 \%$ and $R_{2} 66 \%$, indicating that the inverted structure, i.e., (S) was the correct one. This difference, according to Hamilton's R factor significance test, indicates that the probability of the new configuration being the correct one is over 99.5%.

TABLE 8
 (NO)I

	NMCp-ally	$\mathbf{C p - c r c l o o c t e n s l}$
Mo-Cp(1)	2341 (3)	2330 (4)
$\mathrm{Mo}-\mathrm{Cp}(2)$	2 369(4)	2349 (4)
Mo-Cp(3)	$2404(4)$	$2393(4)$
Mo-Cp(4)	$2349(5)$	$2346(4)$
Mo-Cp(5)	$2310(4)$	2340 (4)
No-C(1)	$2320(6){ }^{a}$	2370 (3)
Mo-C(2)	2 295(8) ${ }^{\text {a }}$	2 294(3)
Mo-C(3)	$2424(8){ }^{\text {a }}$	2 523(3)
Mo-1	$2814(1)$	$2821(1)$
Mo-N	$1781(4)$	1.778(2)
$\mathrm{N}-\mathrm{O}$	1 179(4)	1 202(3)
Cp(1)-Cp(2)	$1432(6)$	$1403(7)$
$\mathrm{Cp}(2)-\mathrm{Cp}(3)$	1 408(6)	$1338(7)$
$\mathrm{Cp}(3)-\mathrm{Cp}(4)$	$1415(8)$	1413 (8)
$\mathbf{C p}(4)-\mathrm{Cp}(5)$	1413 (6)	$1391(7)$
$\mathrm{Cp}(5)-\mathrm{Cp}(1)$	1417 (6)	$1382(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1461(10)^{a}$	1388 (5)
$C(2)-C(3)$	$1202(10){ }^{\circ}$	$1391(5)$
C(3)-C(4)		$1505(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$		$1557(6)$
C(5)-C(6)		$1495(8){ }^{\text {a }}$
$C(6)-C(7)$		$1481(8){ }^{\text {a }}$
$\mathrm{C}(7)-\mathrm{C}(8)$		$1542(6)$
C(8)-C(1)		$1518(6)$
$\mathrm{Cp}(1)-\mathrm{Cm}(1)$	1 548(5)	
Cm(1)-Cm(2)	1530 (6)	
Cm(2)-Cm(3)	1 526(6)	
Cm(3)-Cm(4)	1545 (6)	
Cm(4)-Cm(5)	$1528(7)$	
Cm(5)-Cm(6)	1 522(7)	
Cm(6)-Cm(1)	$1535(6)$	
Cm(2)-Cm(7)	1543 (6)	
$\mathrm{Cm}(7)-\mathrm{Cm}(8)$	1530 (8)	
Cm(7)-Cm(9)	$1527(7)$	
Cm(5)-Cm(10)	1.507(7)	

a Oving to the disorder, the reported standard deviations may underestimate the error

At this point the ratios of the $F_{\text {calc }}$ for the Friedl pars were computed and twenty-six were found to differ by more than 10%. The intensities of these reflections were measured again using 600 sec scan times to increase the accuracy of the measurements. The setting angles were determined using twelve high-angle reflections and their Friedl equivalents. The coordinates obtaned using the (R) and (S) structures should be the best representation of the structure for the crystallographic enantiomorph which was studied. Using the (R) coordinates and the 52 observations and refining only the scale factor, agreement factors of $R_{1} 15.8 \%$ and $R_{2} 19.2 \%$ were obtamed. The "correct" (S) structure gave values of $R_{1} 10.3 \%$ and $R_{2} \mathbf{1 2 . 7 \%}$. This large variation gave us

TABLE 9
BOND ANGLES (deg) FOR (—)(Neomenthy $\left.1-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mo}\left(n^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NO}) I \mathrm{AND}\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MO}_{\mathrm{N}}\left(\eta^{3} \mathrm{C}_{8} \mathrm{H}_{13}\right)$ (NO)I

	NMCp-allyl	Cp-cyclooctenyl
$\mathrm{N}-\mathrm{HO}-\mathrm{C}(1)$	87 (2)	$873(1)$
$\mathrm{N}-\mathrm{Mo}-\mathrm{C}(2)$	88 5(2)	$967(1)$
N -Mo-C(3)	1090 (2)	1083 (1)
N -Mo-I	$898(1)$	910 (1)
$\mathrm{M}-\mathrm{N}-\mathrm{O}$	$1748(3)$	172 2(3)
$C(1)-C(2)-C(3)$	$1299(8)^{a}$	1250 (3)
C(2)-C(3)-C(4)		1259 (3)
$C(3)-C(4)-C(5)$		1110 (3)
$C(4)-C(5)-C(6)$		$1190(4)^{a}$
$C(5)-C(6)-C(7)$		$1218(5){ }^{c}$
$C(6)-C(7)-C(8)$		1200 4 $^{\text {a }}$
$C(7)-C(8)-C(1)$		$1137(4)$
$C(8)-C(1)-C(2)$		$1245(3)$
$\mathrm{Cp}(1)-\mathrm{Mo}-\mathrm{Cp}(2)$	354 (1)	$347(2)$
Cp(2)-Mo-Cp(3)	$343(2)$	$326(2)$
$\mathrm{Cp}(3)-\mathrm{Mo}-\mathrm{Cp}(4)$	346 (2)	$347(2)$
Cp(4)-Mo-Cp(5)	35 3(2)	34 6(2)
$\mathbf{C p}(5)-\mathrm{Mo}-\mathrm{Cp}(1)$	$355(2)$	$344(2)$
$\mathbf{C p}(5)-\mathrm{Cp}(1)-\mathrm{Cp}(2)$	1057 (4)	1071 (5)
$\operatorname{Cp}(1)-\operatorname{Cp}(2)-\operatorname{Cp}(3)$	$1102(4)$	108 4(5)
Cp(2)-Cp(3)-Cp(4)	$1065(4)$	1098 (5)
$\operatorname{Cp}(3)-\operatorname{Cp}(4)-\operatorname{Cp}(5)$	$1088(4)$	$1055(5)$
$\mathbf{C p}(4)-\mathrm{Cp}(5)-\mathrm{Cp}(1)$	1089 (4)	1091 (4)
Cp(1)-Cm(1)-Cm(2)	1119 (3)	
Cm(6)-Cm(1)-Cm(2)	1107 (4)	
Cm(1)-Cm(2)-Cm(3)	$1109(3)$	
Cm(2)-Cm(3)-Cm(4)	$1105(4)$	
Cm(3)-Cm(4)-Cm(5)	$1142(4)$	
$\operatorname{Cm}(4)-\operatorname{Cm}(5)-\operatorname{Cm}(6)$	$1098(4)$	
Cm(4)-Cm(5)-Cm(10)	$1107(5)$	
$\operatorname{Cm}(5)-\mathrm{Cm}(6)-\mathrm{Cm}(1)$	$1025(3)$	
$\operatorname{Cm}(2)-\operatorname{Cm}(7)-\operatorname{Cm}(8)$	111 8(4)	
$\operatorname{Cm}(2)-\operatorname{Cm}(7)-\operatorname{Cm}(9)$	113 3(4)	
$C(4)-C(5)-C(6 B)$		$1184(8)$
C(5)-C(6B) C(7)		$123(1)$
C(6B)-C(7)-C(8)		126(1)

a Owing to the disorder, the reported standard deviations may underestimate the error
greater confidence that the (S) structure was more correct than the 0.004 difference in R_{2} with the full data set $*$.

A difference Fourier map gave the position of most of the hydrogen atoms but also indicated that the end of the cyclooctenyl ring was disordered. Somewhat larger isotropic thermal parameters for $C(4), C(5)$, and $C(6)$ also suggested the disorder. A difference map using all of the atomic coordinates except C (5) gave electron density at the positions of $C(5)$ and $C(5 A)$ in a ratio of approximately $4 / 1$.

[^8]The least-squares refinement was continued for the (S) configuration with all non-hydrogen atoms anisotropic except $C(5 A)$ and $C(5)$, which were kept isotropic and refined with occupancies of 0.2 and 0.8 respectively. Hydrogen atom positions were calculated for all carbon atoms except C (5A) Those for $C(4), C(5)$, and $C(6)$ were included with occupancies of 0.8 . Hydrogen atoms were included in the structure factor calculations, but were not refined. This resulted in the final agreement factors of $R_{1} 38 \%$ and $R_{2} 46 \%{ }^{\text {² }}$. Inversion of the coordinates and refinement to test the (R) configuration gave $R_{1} 41 \%$ and $R_{2} 52 \%$ ~

Using the final atomic coordinates obtained by refinement of the (R) and (S) structures and refining only the scale factor the (R) configuration gave $R_{1} 14.4 \%$ and $R_{2} 16.2 \%$, whereas, the (S) configuration gave $R_{1} 5.8 \%$ and $R_{2} 6.9 \%$ for the 26 accurately determined Friedl pairs having a high anomalous dispersion contribution

A final confirmation that the (S) configuration was the correct one arises from comparison of the ratios of the largest Bıjvoet differences (see Table 4) The ratios of the observed and calculated values of $F(h k l)$ and $F(\bar{h} \bar{k} \bar{l})$ are consistently in the proper direction for all Friedl pairs with large anomalous dispersion corrections.

Determination of sign of rotation of (S)-[(Cp)Mo(cyclooctenyl)(NO)I] Examination of a number of crystals did not indicate a striking difference between enantiomorphic crystals Thus, it was necessary to determine the sign of the rotation of the enantiomer in the crystal used in the X-ray crystal structure determination Since this was such a crucial measurement, the mass of the crystal was estimated from its density (as determined by the unit cell size) and the microscopic dimensions required for the absorption correction. This calculation indicated that the crystal has a mass of $121 \mu \mathrm{~g}$. The capillary was broken and the crystal dissolved in $60 \mathrm{~cm}^{3}$ of chloroform. The following rotations were observed. $\alpha_{D}-0002^{\circ} \alpha_{436}+0.023^{\circ}, \alpha_{365}-0.022^{\circ}$. This corresponds to $[\alpha]_{D}-100^{\circ} ;[\alpha]_{435}+1100^{\circ} ;[\alpha]_{365}-1100^{\circ}$. Specific rotation of greater accuracy were determined below, but the negative rotation at the Na D line is sufficiently precise to give the correct sign. Examination of the ORD curve of partially resolved samples (see below) show that the sign of the rotatıon is negative at $589,578,546$, and 365 nm , but is positive at 436 nm .

Isolution of pure (+)- and (-)-enantiomers of (Cp)Mo(cyclooctenyl)(NO)I] Quantities on the order of 10 mg of pure material could be separated in an hour by dissoiving one crystal at a time; observing the rotation of the solution; and combining all solutions with the same rotational sign.

Structure analysis of (-$)_{\text {D }}$-endo[(NMCp)Mo(allyl)(NO)I] Since this structure contains a neomenthyl group, which has three centers of known absolute configuration, an anomalous dispersion X-ray study is not required to establish the absolute configuration at the metal center We have published a preliminary report of this structure [1]. Nevertheless, to establish credibility in our methodology and to anticipate the magnitude of anomalous dispersion effects in com-

[^9]plexes with no established chural reference points, we recollected the data and the Friedl equivalents for this complex. A crystal $032 \times 015 \times 016 \mathrm{~mm}$ was selected and mounted in a thin-walled glass capillary. The crystal faces were identified as $0 \overline{1} 2,01 \overline{2}, 0 \overline{1} \overline{2}, 012, \overline{2} 11$, and 211 The crystal was mounted with the normal to the 100 plane coincident (0.0°) with the diffractometer ϕ axis. The structure has been determined previously using only $+h+h+l$ data Following the method described for the cyclooctenyl complex, Friedl pairs were collected and the data reduced and corrected for absorption No significant differences in bond lengths or angles were observed in the use of the larger data set.

The final agreement factors for the (S) configuration after refinement were $R_{1} 0.039 \%$ and $R_{2} 0.046 \%$, whereas for the (R) configuration after refinement $R_{1} 0.042 \%$ and $R_{2} 0.051 \%$ were obtained. The agreement with the ratios of the largest Bijvoet differences also confirms the configuration of the neomenthyl group and the chirality at the metal (see Table 5)

Supplementary material

Tables of thermal parameters, and observed and calculated structure factors are avalable *.

Acknowledgement

This research was supported by National Science Foundation grant CHE7911201. We wish to thank Prof R D. Adams for his advice in carrying out the x-ray crystal structure investigations

Refeıences

```
1 J W Faller and Y Shvo J Amer Chem Soc 102 (1980)5398
2 K Stanles and M C Baird J Amer Chem Soc 97(1975)6598
3 E Cesarotti H B Kagan R Goddard and C Krueger J Organometal Chem 162 (1978)297
4 W Klyne and J Buckingham Atlas of Stereochemistry - Absolute Confıgurations of Organic Mole-
    cules Vol I 2nd ed Orford Unuversity Press London 1978 p 78
5 W C Hamulton Acta Crystallogr 18 (1965) 502
6 G Kartha FR Ahmed and W H Barnes Acta Crystallogr 15 (1962)}32
7 J M Buvoet. A.F. Peerdeman, and A J. van Bommel Nature (London) }168\mathrm{ (1951) }27
B H Brunner Top Curr. Chem 56 (1975)249.
9 C -K Chou DL. Miles R Bau and T C Flood J Amer Chem Soc 100 (1978)7271
10 J.W Faller C C Chen M J Mattina and A Jakubowski J Organometal Chem 52 (1973)}36
11 JW Faller, D F Chodosh D Katahura, J Organometal Chem 187 (1980)227
12 JW Faller, and A M Rosan, J Amer Chem Soc 98(1976)3388
13 J W Faller and N T Tully, J Amer Chem Soc, 94 (1972)}267
14 AI Scott and A D Wrnyon, Tetrahedron 27 (1971)2339
15 R D Adams, D F Chodosh, J W Faller and A M Rosan J Am Chem Soc 101 (1979) 2570
16 J W Faller in F C Nachod and J Zuckerman (Eds), Determmnation of Orgamc Structures by
Physical Methods, Academic Press, London Vol V,1973 p 75
17 J W Faller, H H Murray, D Katahira, A M Rosan, and Y Shvo, J Organometal Chem, to be
submitted
18 R J Angelicı and G A Faber Inorg Chem, 10 (1971)514
19 R G. Hayter J Organometal Chem 13(1968)1
20 International Tables for X-ray Crystallography, Kynoch Press Burmmogham England 1975 Vol IV
(a) Table 2 31p 149-150 (b) Table 2 2B p 99-101
```

[^10]
[^0]: * To whom correspondence should be addressed
 ** On sabbatical leave from Tel-Anv Unuversity
 *** NMCp = NeomenthyIcyciopentadienyl

[^1]: * The chmality can be descnbed adequately by assumng the Cp. NO. allyl, and X are tetrahedrally arranged about the molybdenum atom Endo-exo isomensm of the allyl is considered separately
 * $*=y^{* s e n s e}$ of chirality" we mean that Cp. NO. and allyi maintan the same position relative to Mo and to each other but \mathbf{X} is either CO or I

[^2]: * The nature of the process responsible for the vanations in ORD and CD spectra were not establiched unequivocally before this paper (see below).

[^3]: * It remans to be proven that this does not occur with inversion at the metal in tne CpMo(allyl)(NO)(CO) center Studues reported later in this paper suggest that this interconversion occurs via rotation of allyl, hence, the configuration at molybdenum should be retained

[^4]: * The interaction of the ning with the central substituent in the exo somex in the nitrosyl compounds is reduced owing to the tilting of the allyl induced by the electronic asymmetry of the system [11]

[^5]: * No X-ray structures of an exo-allyl had yet been determined for a CpMo(allyl)(NO)X system

[^6]: * The churality at the metal $2 s$ assumed to be retained dunng the rearrangement

[^7]: * The $\pi-\sigma-\pi$ rearrangement occurs with retention of configuration of the terminu of the allyl relative to the NO group [17] That is, if a given termunus starts trans to NO it ends trans to NO after the rearrangement Although thus process is occurning rapidly in the (\rightarrow D-[(NMCp)Mo(allyl)(NO)I] it does not lead to epimenzation at the metal center The rotations observed for the iodides are stable in solution for days The rotation only degrades by 10% after one week in solution The cyclooctenyl denvative might form a σ intermediate but it would return to the same configuration since the ang prevents syn-anti interchange.

[^8]: * With a large data set virtually any improvement in \boldsymbol{R}_{1} or \boldsymbol{R}_{2} will indicate significance at better than the 995% level Thus for the full data set the ratio of the R factors $R\left(R_{1}\right)=104$ and $R\left(R_{2}\right)=$ 106 The cntenon for 995% significance is R greater than $R_{1,37150005}=1001$. For the lumited set of 52 reflections $R\left(R_{1}\right)=153$, and $R\left(R_{2}\right)=151$ with $R_{1} 510005=108$ In either case the signuficance is well beyond the 995% level.

[^9]: * Both final refinements were carned out untll the shift/error parameter for all atoms was 000 (four cycles) The Hamition tests again showed the (S) configuration to be correct at well beyond the 995% confidence level $R\left(R_{1}\right)=108, R\left(R_{2}\right)=113$ and $R_{1,3715,0005=1.001}$.

[^10]: * See NAPS document No. 3902 for 56 pages of supplementary matenal Order from NAPS Microfiche Publucations, P O Box 3513, Grand Central Station, New York, N Y. 10163 Remit in advance, in.U.S. funds only, $\$ 1825$ for photocopies or $\$ 4.00$ for microfiche. Outside the U S and Canada, add postage of $\$ 450$ for the first 20 pages and $\$ 100$ for each 10 pages of matenal thereafter, $\mathbf{\$ 1} 50$ for mucrofiche postage

